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TECHNOLOGY OBJECTIVE
Entry, Descent, and Landing (EDL) of a payload on the surface of Mars.

2016

SCIENTIFIC OBJECTIVE

To study Martian atmospheric trace gases and their sources, possibie signature of
geophysical or biological activity.

Methane release:
Northern summer

Methane Concentration

0 5 10 15 20 25 30
parts per billion

Provide data relay services for landed missions until 2022.




ExoMars Scientific Objectives Trace Gas Orbiter Objectives

To search for signs of past and present
life on Mars

To investigate the water/geochemical
environment as a function of depth in
the shallow subsurface

To investigate Martian atmospheric
trace gases and their sources.

Detection of a broad suite of
atmospheric trace gases, possible
signature of geophysical/biological
activity on Mars

Characterization of their spatial and
temporal variation

Localization of the sources of key trace
gases




What geophysical gases should we expect?
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List of TGO high priority target species

H20, HO2, H202, NO2, N20,
CH4, C2H2, C2H4, C2H6, H2CO,
HCN, H2S, OCS, SO2, HCI, CO,
O3



Mars Atmosphere:
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surface to 100 km for CO» 1 and 100x pre-
sent atmospheric level of CO,.

atmospheric lifetime for SO, for the present-day CO, level
and for enhanced atmospheric levels of COz is shown in Fig-
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M
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atmospheric CO> level increases from the present-day level photolysis by solar ultraviolet radiation. However, for en-

to 100 times the present-day level. These calculations indi- hanced levels of
cate that SO, remains in the atmosphere for a very long time,

tmospheric CO,, photolysis is the dominant
loss process only at high altitudes and at lower altitudes,
the loss of SO is controlled by the reaction with OH.

- CO years

* While CO2 and H20 already exist in significant
guantities (detecting fluctuations is difficult and
ambiguous wrt. other potential processes)



* Most chemical species
released by geophysical
activity have “short”
chemical lifetimes:

- CH4 300 yrs
- S02 1-2 years

- CO 3 years
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Figure 2. The vertical distribution of CO, density in the
atmosphere of Mars from the surface to 100 km for CO, — 1,
2. 10 and 100x present atmospheric level.

atmospheric lifetime for SO, for the present-day CO, level
and for enhanced atmospheric levels of CO, is shown in Fig-
ure 3. The calculations shown in Figure 3 indicate that the
lifetime of SO, in the lower atmosphere of Mars increases
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atmospheric CO> level increases from the present-day level
to 100 times the present-day level. These calculations indi-
cate that SO- remains in the atmosphere for a very long time,
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Figure 4. Loss processes for SO» in the atmosphere of
Mars from the surface to 100 km for CO» 1 and 100x pre-
sent atmospheric level of CO,.

times the present atmospheric level (100 x PCO,) is shown in
Figure 4. These calculations show that in the present Mars
atmosphere, the loss of SO, at all altitudes is controlled by
photolysis by solar ultraviolet radiation. However. for en-
hanced levels of atmospheric CO,, photolysis is the dominant
SO, loss process only at high altitudes and at lower altitudes,
the loss of SO, is controlled by the reaction with OH.

* While CO2 and H20 already exist in significant
guantities (detecting fluctuations is difficult and
ambiguous wrt. other potential processes)

* The search for geochemical gases can only trace very

recent or ongoing activities

9016.pdf



Is there surface hints of current/recent

geophysical activity on Mars?

Geomorphological evidences of recent volcanic
activity (106-7 yrs)

* Sulfate deposits in the North polar region
(Langevin et al., 2005; Fishbaugh et al., 2007)



current/recent geophysical activity on

* Geomorphological evidences of recent volcanic
activity (106-7 yrs)

* Sulfate deposits in the North polar region
(Langevin et al., 2005; Fishbaugh et al., 2007)

* Themis IR mapper sees no hot spot
(Christensen, 2003)



Cesa TGO science instruments

UVIS (0.20 — 0.65 pm) A/AX ~
250

IR(2.3-3.8um) AAA~
10,000

IR(2.3-4.3pum) AAA~

¢/ ACS Atmospheric chemistry, aerosols,
surface T,

... Suite of 3 high-
B & structure

resolution

Near IR (0.7 — 1.7 um) A/AA ~ 20,000 @

IR (Fourier, 2 — 25 um) AM/AX ~ 4000 (50)/500 (N) m

Mid IR (2.2 — 4.5 pm) A/AA ~ 50,000

4 FREND iicec

) subsurface water
... Collimated neutron detector

All resolving power figures A/AA are calculated at mid-range
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ACS: Major Science themes

“Breakthrough” Science
- with MIR channel Solar Occultations

- Trace Gas detection with ppt sensitivity or/and revisit upper limits
(may probably set an “all time” reference for future exploration missions)

“Novel” Science

- with all channels in Nadir/Occultation

- First mapping of D/H ratio
new information on water reservoirs and their history, cloud processes

- Oxidant species

HOx family (e.g. H202, OH, HO2) barely characterized on Mars, only reactants
(03)

“Climatological” Science
- with TIRVIM and Near-IR in nadir

- Mapping of meteorological fields
temperature, dust / ice aerosols, water vapor
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ACS-NOMAD:

synchronizing the approaches?

Two comparable and highly capable instruments on the same platform

This mission may set a new standard for Mars atmosphere composition.
For this reason, it is probably better to have one single and loud voice

Complementarity (spectral and thus scientific) between the two

instruments is obvious: may lead to common effort threads (oxidants +
03)

ExoMars TGO will feel the pressure of a community expecting
confirmation/contradiction of CH4 existence

Two instruments saying the same thing at the same time is the safest way
to go to make results believable by our community

Corrdinate announcement for (non)detection of any “hot” trace gas
species (by the ExoMars Project Scientist)

Scientific coordination between the two instruments should be a major
task of ExoMars Project



* Having data pipeline ready by Mars Orbit
Insertion will be critical for a prompt delivery
of early results (upper limits or detection of
trace species)

* We should define a priority ordering and a
elaborate a schedule for building and testing
data pipelines (example of MAVEN: data
pipeline ready at launch, counter-example of
SPICAM-UV: pipeline insufficiently mature,
first conclusion proved to be wrong)

y _] f -a



Normalized absorption spectra

Normalized absorption spectra

Cesa Trace species visible in the IR
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ACS observations in Solar Occultations
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The case of Halogen species
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HCI, HF, HBr, etc....

None of these species have been detected to date.

S
ﬁ@: . .
L Upper limits on HCl and H,O
Herschel 272
latest results
give an |
upper limit t i bl o,
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< 200 ppt < 2 ppb

Hartogh et al. 2010, & A



The case of Sulfur species
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Sulfur species on Mars

Sulfur species found at the surface
- Viking: sulfates in the soil (5-10%, Toulmin etal. 1977)

Spirit & Opportunity: sulfates minerals (>10%, squyres et al. 2004)

OMEGA/MEXx: Calcium sulfate (gypsum) identified at high N-
latitudes (Langevin etal. 2005)

Encrenaz et al., 2011



Sulfur species on Mars

However, no sulfur-bearing molecule has been found in the
atmosphere

- OCS <70 ppb

- H2S < 20 ppb

- S02<1ppb thermal IR (krasnopolsky 2005)

- S02<2ppb submm (Nakagawa et al. 2009)

Encrenaz et al., 2011



SO2 upper limit — Krasnopolsky, Icarus 178, 48, 2005

ScienceDirect — Full Size Image 28/01/11 19:01
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Fig. 3. Sum of spectral intervals centered at the expected positions of sixteen SO lines and corrected for their continua (see
text). Error bars show standard deviations of the summed points. Each subpixel is d=0.00228 cm!1. s=1.0"10!' 18 cm is the

sum of the sixteen line strengths. The Gaussian has a width of the instrument spectral resolution (0.0177 cm' 1) and
corresponds to the SO, mixing ratio of 1 ppb in the martian atmosphere.

Model: SO2 =1
ppb

https://webmail.obspm .fr/cgi-bin/nph-proxy.cgi/010110A/http/... 3d0&_userid= 3d2920550&md5=3dc501dae7c239adel 2107b3aa999b5b94 Page 1 sur 1

SO2 < 1 ppb (2s) — Integration over Tharsis region
Ls = 205° (June 2003)
Encrenaz et al., 2011



imaging spectroscopy in the thermal
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Normalized radiance
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SO2 upper limit over the Martian disk

Models: SO2 = 0.5, 1 & 2 ppb
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Conclusions for sulfur species

SO2 upper limit (20): 0.3 ppb at mid-northern latitudes,
2 ppb at all northern latitudes

SO2 is a non-condensible species with lifetime (2 yr) longer
than global mixing (0.5 y)

- homogeneous distribution is expected

No evidence for localized sources
- even around gypsum region

- consistent with above statement (S-rich areas are not tracers of
gaseous SO2)

No evidence for seepage at the Martian surface
- S02/CH4 typically 10-4 — 10-3 in Earth volcanoes

- If CH4 is present on Mars, seepage origin seems unlikely (cf.
Krasnopolsky 2005)



The case of Methane

Cliquez pour modifier le style des sous-titres du masque




REPORTS

Detection of Methane in the
Atmosphere of Mars

Vittorio Formisano.'™ Sushil Atreya.® Thérése Encrenaz.”
lznas

pericenter pas of orbit 145, with an air-mass
factor of 1.12, is shown in Fig. 3. Upon taking
into account the air-mass factor, we obtain a
methane mixing ratio of 30 = 5 ppbv. This
value is higher than the global average ratio
of 10 = 5 ppbv and indicates that the methane
mixing ratio may be variable. Motivated by
this possibility, we have examined several
other orbits, including orbit 68, 202, and 72,
for which the air-mass factors are, respective-
ly, 1.03, 1.33, and 2.1. We discovered that
orbit 72, for which the air-mass factor (2.1)
was even greater than in orbit 145 (1.12).
gives another extreme in CH,. Because the
number of measurements for thi
close to those in orbit 145, a similar sigma
value is obtained. Figurce 4 gives the average
PFS spectrum for orbit 72. However, there is
no indication of the mecthanc linc., and the
synthetic spectrum with no methane fits the
data nicely. Because the synthetic spectrum
fitting orbit 72 data has been computed using
the same solar spectrum as we used for other
fits, this indicates that the 3018 cm ! line was
not duc to the Sun. From the four orbits 68,
145, 202, and 72, with respective air-mass
factors of 1.03, 1.12, 1.33, and 2.1, mcthanc
mixing ratios of 9, 30, 30, and O ppbv are
derived by comparing the observed mecthanc
line depth to synthetic spectra, after taking
into account the air-mass factors. In the casc
of orbit 72, we conclude that the methane
abundance is beclow our dctectability limit:
lower than 5 ppbv.

The above variation in CH_, could rcpre-
sent cither spatial or temporal changes or
both. Because the time span of our observa-
tions (January through May 2004) is short
compared to the martian year (almost 2 Earth
years) and secasons (about 6 months cach),
the CH_, wvariation mentioned above can be
studied versus spatial changes. Space varia-
tions could be present because of localized
sources and/or localized surface sinks. We
can attempt to determine whether the spatial
variations occur over a large range of
longitude by dividing our original 16 orbits
(or 24 orbits) into three longitudinal ranges:
longitudes 55° to 170° (orbits 10, 30, 32,
41, 44, and 202); longitudes +52° to —55°
(orbits 20, 61, 100, 103, 745, and 148); and
longitudes +52° to +190° (orbits 24, 71, 72,
and 97) (the numbers in italics represent
inertial orbits) (Fig. 5). The three sets of
orbits for the second group are as follows:
longitudes —55° to —170° (orbits 390, 386,
394, 397, 400, and 401); longitudes +52° to
—55° (orbits 404, 405, 408, 4710, 411, 426,
427, 428, 429, 430, and 437); longitudes +52°
to +19° (orbits 474, 417, 418, 420, 421, 424,
and 425) (the numbers in italics represent
inertial orbits). The three sets of longitudes
are presented in different colors in Fig. 5.

The methane mixing ratio decreases from
group 1 to group 3 (Fig. 6). The best fit is

obtained for the methane mixing ratios of
25+ 5,15+ 5,and 10 = 5 ppbv, respectively,
for the three longitude ranges, going from
eastern longitudes to western longitudes.
However, orbit 145 i group 2 has the
highest mixing ratio of any individual orbit,
implying that methane concentrations can be
high in smaller regions within these longitu-

=3
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voirs, or the destruction of meteoritic or
cometary material during infall. We estimated
the global methane mixing ratio produced by
cach of these sources. The observed global
average mixing ratio of 10 ppbv amounts to a
column abundance of 2.2 > 10!5 cm—2 CH,
molecules at the surface of Mars. Assuming a
CH, photochemical lifetime of —2 > 1010 s

dinal ranges. 23) we estimate that a

ngar the surface (5.
Previously. an upper limit ot(z:%;ﬂv {171 {x of ~1 = 107 molecules em—=2 s~ would
methane was obtained by Mariré 1At required to explain a CH, mixing ratio of

and another one of 70 = 50 ppbv was inferred 10 ppb on Mars (/6). Integrated over the
from ground-based observations (/&). How- planet, this would amount to a methane
ever, source strength of —4 g s~ 1; that is, —1.26 =<

recently two ground—basedﬁe“ions
of methane were reported (/9 ) with®a
mixing ratio of 11 + 4 ppbv (#0). in agree-
ment with the Mars Expres FS result for
the global methane mixing rdtio.

On Earth, the dominant s
is biogenic sources such as t

1

105 kg year— ! or ~126 tons year—

The flux of micrometeoritic dust at Mars is
estimated to be —300 g s—! or —9000 tons
year ! (24). Most of it would burn up in the
atmosphere, but allowing for a generous 25%
purviving to the surface (24). nearly 2300 tons

of methane
Irmites and cattle

(27). Other sources of tergestrial methane year ! could recach the surface of Mars. If all
include marshes, rice paddfes, natural gas, >f the micrometeoritic dust is assumed to be
lakes, and ocecans. On Mars, methane could om carbonaccous chondrites, then organic
be derived from biogenic sWYurces such c about 326 of the flux

as  p materials would compri
subsurface microorganisms (/) or nonbio- (25): —70 tons year !. If all of the organic
genic sources such as the slSW release o materials could be converted to methane. then
mecthanc stored in subsurface reschwoj micrometcoritic sources of methane would be

s - w1t
gassing from volcanic/hydrothermal reser- roughly comparable to that needed to explain
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Fig. 1. (A) A portion of the first averaged PFS spectrum (January-February 2004, black curve), with
+1c confidence (red lines). The SNR is about 1300. Methane is identified at 3018 cm 1. There are
three water lines (at 30035, 3022, and 3026 crm—') and two solar lines (at 3012 and 3014 cm—). The
continuum slope is due to water ice clouds in the atmosphere. The small peak at the left of the main
solar line is due to instrumental response function. (B) The second averaged PFS spectrum (May
2004) in the same frequency interval. The caption is the same as for (A). The SNR is about 1500.
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Fig. 2. (A) Synthetic spectra computed for O ppbv (green curve) and 10, 20, 30, 40, and 50 ppbv
(violet curves) of methane, compared with the PFS average spectrum (black curve). The synthetic
spectra have been computed for 6.7 millibars of CO_, including 350 ppm of H_O, along with dust
and water ice clouds. The temperature profile obtained from simultaneous measurements in the
thermal radiation was used. (B) Same as (A), with the PFS mean spectrum shown in Fig. 1B.
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Fig. 1. (A) A portion of the first averaged PFS spectrum (January-February 2004, black curve), with
+1o confidence (red lines). The SNR is about 1300. Methane is identified at 3018 cm~". There are
three water lines (at 3003.5, 3022, and 3026 cm™') and two solar lines (at 3012 and 3014 cm™7). The
continuum slope is due to water ice clouds in the atmosphere. The small peak at the left of the main
solar line is due to instrumental response function. (B) The second averaged PFS spectrum (May
2004) in the same frequency interval. The caption is the same as for (A). The SNR is about 1500.
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Fig. 2. (A) Synthetic spectra computed for 0 ppbv (green curve) and 10, 20, 30, 40, and 50 ppbv
(violet curves) of methane, compared with the PFS average spectrum (black curve). The synthetic
spectra have been computed for 6.7 millibars of CO,, including 350 ppm of H,0O, along with dust
and water ice clouds. The temperature profile obtained from simultaneous measurements in the
thermal radiation was used. (El!:| Same as (A), with the PFS mean spectrum shown in Fig. 1B.

Fig. 5. Geographical distribution of the orbits considered: red (high methane mixing ratio), yellow
(medium methane mixing ratio), and blue (low methane mixing ratio). Strong fluctuations occur in
each of the three categories, indicating the possible presence of localized sources.

Global Average: 10 + 5 ppbv



2009: Groundbased Observations

(MUMMA et al., 2009)
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The Martian methane puzzle

Two scenarios can explain the existence of
CH4.:




The Martian methane puzzle

Two scenarios can explain the existence of
CH4.:

- Geophysical source : magmatic outgassing or hydrothermal sources

Serpentinization
produces methane
in undersea black
smokers at Earth.

(Fe,Mg)25i104 + nH20 + CO2 XMg3Si205(0OH)4 + Fe304 + CH4



The Martian methane puzzle

* Two scenarios can explain the existence of
CH4.:

- Biological source: biomass decomposition (natural gas),metabolic production,
i.e. Life

Methanogens in =y oF
subsurface oceans (RSN
would produce :
methane from their [
consumption of H,
CO2, etc.

CO2 + 4H2 — CH4 + 2H20



Mumma’s observations require

A Methane production rate
(150,000 tons emitted)
comparable to the entire Mid-
Atlantic ocean ridge

(Lefevre and Forget, 2009)

* A Methane sink term 600x
stronger than predicted by
otherwise validated
photochemical models
(Lefevre and Forget, 2009)

 Zahnle et al. (2011) provide lines
of evidences that Martian CH4 lie
in the vicinity of terrestrial 13CH4
lines
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region of Syrtis Major where enhanced methane was obs.
2003 (ref. 3). A particular atmospheric lifetime was attributed to cach
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wcer injected into the atmosphere bal
srated loss over the Martian year. Figure 2a quantifies the maxi
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and has an observed value of —12 (ref. 3)
our simulations for an episodic release and if the gas ha
about 200 terrestrial days, in agreement with the value Sbtained in
- closely the

ces exactly the int

defined

the source ceased to emit, the region of emission
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Alifetime of 200 terrestrial days implies the
methane sink that is 600 times more cfficient than the loss predicted by
the current consensus on terrestrial atmospheric chemistry. It h
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" -d by the strong electric fields generated during dust
We investigated this hypothesis by implement 2 the
GCM the dissoc CO, and H,O by energized elec-
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mounts of hydrogen peroxide, H,O, (refs 4, 20,2 1). The H,O,

ratio was determined to be 18 p.p.b.v. at 20° S in the dust storm

(L. = 250", equivalent dust visible opacity of —1 at 7 hPa) that followed
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2011: Groundbased Observations

* Report by Mumma’s team at the Fourth
International Mars atmosphere Workshop
(Paris, february 2011):

- 2009-2010 campaign

- New instrument CRIRES: higher sensitivity and
higher spectral resolution

* Results:
- No methane detected (upper limit 1-5 ppbV)



2013: Mars Science Laboratory

SAM suite: search for organic
molecules and study
habitability

Atmospheric measurements:

CO2, CO, H20, Ar, N2, CH4 (< 100 pptv)...

No detection of
methane:
0%1.1 ppbv

Webster et al. (Science, 2013)




2013: Mars Science Laboratory

SAM suite: search for organic
molecules and study
habitability

Atmospheric measurements:

CO2, CO, H20, Ar, N2, CH4 (< 100 pptv)...

Future runs to come
with 10x (at least) the
current sensitivity
(enrichment process)




Identifying the origin of Martian

methane

Determining the origin of methane on Mars can only be addressed by looking at
methane isotopologues and at higher alkanes (ethane, propane).

Genetic Zonation

ratio of methane/(ethane + propane) with 8'3C (methane)

10

10

f\m s
I 10
(@]

(after M. Allen/ Horita, Berndt)






with
a little extra precision is a
myth.”
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