

Martian studies executing & planning at Tohoku Univ. etc.

- Infrared spectroscopic observations
- Numerical modeling studies
- Ground-based & space programs

and expected extensions toward & with TGO / ACS

<u>Y. Kasaba</u>¹, H. Nakagawa¹, T. Sakanoi¹, S. Aoki^{1,5}, T. Kuroda¹, N. Terada¹, H. Sagawa², Y. Kasai², T.M. Sato³, T. Imamura³, Y. Hirahara⁴ (1: Tohoku Univ., 2: NiCT, 3: ISAS/JAXA, 4: Nagoya Univ., 5:IAPS-INAF)

Tohoku University

Sendai (300km north from Tokyo)

Neutral & Plasma Atmospheres in Solar System

~ Radio / IR / Vis / UV + Numerical studies ~

Our current targets for Mars ~ Observations & Simulations ~

Atmospheric Escape

Minor elements: production / loss / circulation

Global dynamics

Air glow imaging & Atmospheric waves

Water & CO₂ Cycles: Sublimation - condensation

<u>Atmospheric Escape</u> <u>A mission to Mars: *Nozomi (1998-2004)*</u>

Main target: to investigate the Martian upper atmosphere by the consortium of Imaging & Plasma instruments

The spirits of Nozomi was partially continued to BepiColombo & JUICE, and ...

Sprint-A/EXCEED mission

(EXtreme ultraviolet spectrosCope for ExosphEric Dynamics)

~ Extreme Ultraviolet (EUV) space telescope ~

- Launch	14 Sep 2013
- Observation	Nov 2013 ~

A (partial) recovery mission of Nozomi in UV/EUV/XUV plasma imaging

Collaboration with MAVEN is now in planning.

Hybrid Simulation of Exosphere, Ionosphere, and Escaping atmosphere

(Terada et al.)

<u>Nozomi-heir mission (in 2020s?)</u> Investigate how and where the Martian CO₂ and H₂O disappeared

• <u>Target 1:</u>

Current escape rates of CO₂ and H₂O

- <u>Target 2:</u>
 Escape mechanisms
- <u>Target 3:</u>

Responses to solar forcing (extrapolate backwards through the Martian history)

• <u>Target 4:</u>

Responses to forcing from lower atmosphere

 \rightarrow Energy transfer from lower to upper

Infrared / Submm studies of Martian Atmosphere ~ with Large-sized facilities ~

ASTE Infrared: Mauna Kea Submm: Atacama (NAOJ) **ALMA Snap-shot High-spectral resolution** Subaru Infrared: Mars Express (with PFS team) IRTF

Continuous & Long-term Monitoring

Our current targets for Mars ~ Observations & Simulations ~

by **MEX/PFS**

Global dynamics

- GCM/Thermal Tides etc.

- Gravity Waves etc. (not Mars. Earth/Venus/Jupiter)

by VEXRadio-Sci., ISS/AirGlow (Earth), IRTF (Jup.) NIR – YES, in vertical [in horizontal ???]

TIRVIM - YES by wide Local-Time coverage

- Mesospheric wind

Water & CO₂ Cycles Minor elements

- H₂O & CO₂ clouds

 $- H_2O/HDO$

 $-\frac{12}{CO_2}/\frac{13}{CO_2}$

- H2O2 (with CH4)

by MIR heterodyne, mm/submm (ground based MIR/mm/submm + Models)

by MEX/PFS, comparing OMEGA data <u>TIRVIM: YES by higher spectral res. & sens.</u> in Vertical (with photometer ch?) [horizontal ?]

by SUBARU (+ submm) by SUBARU (+ MEX/PFS) by MEX/PFS <u>NIR/MIR/TIRVIM: complete exploration !!</u>

with modeling studies & the development of Radiation-Transfer code

Martian environment studies executing & planning at Tohoku Univ.

Y. Kasaba et al. (IKI, Oct 2013)

Global dynamics: Thermal Tide

(Sato et al.)

by MEX/PFS, thanks to its wide Local-Time coverage

diurnal and semidiurnal migrating tides

Global dynamics: Gravity Waves

(Sakanoi et al.)

~ Connection from lower to upper atmospheres ~

Martian upper atmosphere

Time variation of GWs observed during aerobraking on MGS and Mars Odyssey [Fritts et al., 2006]

Martian lower atmosphere (10-30 km alt.)

Global distribution of GW potential energy at 10-30 km alt. (vertical wave lengths < 10 km) by the radio occultation of MGS [Creasey et al., 2006]

Gravity waves (GWs) from lower atmosphere are important for main transport (large-scale winds and eddy diffusion) into the thermosphere which could be seen in Airglows

(Y. Sato et al.)

Dynamics & Minor elements: H₂O & CO₂ clouds

Cloud particle characteristics can be followed by spatial resolution better than PFS & wavelength resolution better than OMEGA.

Dynamics & Minor elements: Radiative Transfer

DRAMATIC M-GCM (T. Kuroda) DRAMATIC = Dynamics, RAdiation, MAterial Transport and
their mutual InteraCtions [Kuroda et al., 2005-2012] Dynamical CCSR/NIES/FRCGC AGCM 5.7b (MIROC 4.0)

core 3-dimensional primitive equations, spectral solver

Resolutions Horizontal resolution of ~5.6°×5.6° (T21) (grid interval of ~333km at the equator) 49 layers with σ levels, the model top is at ~100km.

RadiationCO2: Absorption and emission in MIR (15μm, 4.3μm)NIR NIR absorption (only LTE effects)Dust: Absorption, emission and scattering in 0.2-200μm

Tracers Water vapor, water ice, CO_2 ice

SurfaceRealistic topography, albedo, thermal inertia and
roughness, deposition of CO_2 and water ice

DRAMATIC M-GCM

- Baroclinic waves (Kuroda et al., 2007)
- Semiannual oscillations (Kuroda et al., 2008)
- Polar warming with global dust storm (Kuroda et al., 2009)

(T. Kuroda)

Annual variances of CO₂ polar cap thickness and surface pressure (in comparison with Viking observation)

polar atmosphere (Kuroda et al., 2013)

Change of atmospheric fields with global dust storm Simulated CO₂

Semiannual oscillations on equator

Latitude

HDO/H₂O ratio search by SUBARU/IRCS Subaru [Aoki et al.] 3.0x10 2.5x1 [benefit] 2.0x1 (1) 2.94–3.01 µm Q 1.5x10⁴ telluric H2O lines simultaneous coverage 1.0x10 5.0x10 of wide spectral range 200 400 1000 600 (b) Order-18 by Cross-Disperser Echelle 3x10 (2) 3.10-3.18 um 2x10 telluric H2O lines 1x10 Table. IRCS Instrument parameters 200 (c) Order-17 (L-band echelle) (3) 3.28-3.36 µm 4x10 telluric H2O lines ₽ ^{3x10} 2x10 CSHELL IRCS 2x10 telluric CH4 lines 1x10 Spectral ~80cm⁻¹ ~10cm⁻¹ 400 ž00 800 1000 x 5 bands coverage (d) Order-16 6.0x10⁴ 5.5x10⁶ Spectral (4) 3.49-3.57 µm 5.0x10* ~20,000 ~40,000 4.5x10 telluric CH4 lines resolution 4.0x10 3.5x10* 0.14"x6.69" 0.47"x30' Slit 200 600 800 1000 400 (e) Order-15 (5) 3.72-3.81 µm 6x10[°] Pixel 0.06" 5x10⁶ 0.2" telluric HDO lines MUM MANAMANA a 4x10° Scale Martian CO2 3x10* isotope lines 2x10^t 600 800 200 400 1000

Fig. An example of measured spectrum by IRCS (5-min integration).

Owing to the wide spectral coverage, we could performed absolute simultaneous observations of multiple CH₄, H₂O, HDO, and CO₂ lines.

HDO/H2O latitudinal distribution (Ls=96)

D/H (wrt. SMOW)

Fig. The predicted annual cycle of HDO/H2O ratio calculated by the GCM (Montmessin et al., 2005).

In Ls=96 (northern summer), HDO/H2O shows higher latitudinal dependences to the model.

We are considering it with Kuroda's model, but also hope to discuss with Frank.

Fig. Latitudinal distributions of HDO/H2O ratio (left) water ice cloud optical depth at 830 cm⁻¹ retrieved from the PFS/LWC observations (right). Differences in color shows the PFS orbits (different date and longitude). The red curve represents their mean values and standard deviation.

- Very low level of volcanic gas or the gas dissociated from sulfates for several years & no seasonal variation.

- If "CH₄/SO₂" ratio is same as Earth's, CH₄ from the inner crust is much few.

H₂O₂ search for the CH4 variation factors [Aoki et al.]

✓ This study used the LWC data in the spectral range from 350 to 400 cm⁻¹ (25.0–28.5 um), which includes the strong absorption lines of H_2O_2 and H_2O (no CO2, dust features).

Fig. (Top) Line strength of H₂O and H₂O₂ obtained from HITRAN08. (Middle and Bottom) Synthetic spectra for the spectral resolution of the apodized PFS spectrum. The black and color curves show the spectra with

←Line strength (HITRAN 08)

-Synthetic spectra (PFS resolution)

✓ Note that the band around 362 cm⁻¹ is overlapped with weak H₂O band (363 cm⁻¹) and strongly contaminated by the side-lobes of water lines (360–361 cm⁻¹). Therefore, we mainly used 379 cm⁻¹ band to search of H₂O₂ and investigate its seasonal variation.

by long-term MEX/PFS data in order to get 'AVERAGED' view.

This wavelength was a unique solution in MEX/PFS capability.

H₂O₂ search for the CH4 variation factors [Aoki et al.]

✓ We found that the mixing ratio of H_2O_2 increased at $Ls = 120-240^\circ$, and it is correlated with H2O variation.

* Krasnopolsky (2009). and Lefevre et al (2008) predicted seasonal variation of H2O2.

* The differences between two models are coefficients of (1) H2O2 production (HO2+HO2) and,

(2) heterogenous loss (H2O2 + water ice).

TOHOKU

Martian environment studies executing & planning at Tohoku Univ. *Y. Kasaba et al.* (IKI, Oct 2013)

Martian environment studies executing & planning at Tohoku Univ.

Y. Kasaba et al. (IKI, Oct 2013)

Tohoku University Haleakala "Very-Small" Observatory in Haleakala High-Altitude Observatories (Univ. Hawaii)

Figure 2-3. Aerial of Haleakalā Observatories Looking remotely operated from our University

litate 60-cm telescope: move to Haleakala, Hawaii

Tohoku Univ. 60cm Observatory moved to Haleakala

First light: in summer 2014

PLANETS 2m

Off-axis Planetary &

Exoplanetary telescope

(by institutes from 6 countries)

- Wide dynamic range
 Off-axis with 1/100λ smoothness
- with Coronagraph & AO
- Polarization: Equatorial mount

First light: end of 2015 ?

Flexible operations! (Ex) support campaign, Dust storm, ...

Instruments

Near-infrared	Echelle	imaging	g spec	trogra	ph

Detector:	1k x 1k CCD			
FOV:	10' with optical fiber			
Resolution :	~50,000 in 500-900nm			

NIR high-resolution Echelle Spectrograph

Detector256 x 256 InSbFOV50' or filter imaging

Resolution ~50,000

Mid-infrared heterodyne super high-resolution spectrometer

+ MIR Echelle

Detector: MCT photo-diode

Resolution : > 1,000,000

Wavelength : 7-11 μm

Heterodyne Target: with R>1,500,000

Seasonal var. of trace gas, H₂O₂ (Lefevre+, 2009)

Mesospheric wind and T

2.0m telescope @ Antarctica

Mars meteorological orbiter concept (in 2020s)

Nominal mission plan: a medium-size orbiter The primary target **Others** Water cycle

Dust meteorology Atmospheric chemistry

Nominal plan: Continuous global monitoring from high orbit using a set of dedicated meteorological sensors

FIRE (Far Infrared Experiment)

- Atmospheric composition in Sub-mm (550-620 GHz range)
- Key parameters of Meteorological science
 - 3D structure of temperature
 - 3D observation of water vapor, CO, O3, and its isotopes
 - Surface temperature and properties
 - Wind velocity

FIRE observation Geometry

Trace Gas Orbiter 2016

We hope to go as far as possible with TGO, and extend the outputs to the next.

Channel	Observation modes	Spectral range	Type of instrument	Resolving power (resolution at mid- range)	SNR	Vertical resolution	Spatial Resolution
NOMAD/SO	Solar Occultation	2.2-4.3 μm 2325-4545 cm ⁻¹	Echelle / AOTF spectrometer	20000 (0.15 cm ⁻¹)	3000	< 1km	
NOMAD/LNO	Solar Occultation / Limb / Nadir	2.2 – 3.8 μm 2631-4545 cm ⁻¹	Echelle / AOTF spectrometer	10000 (0.30 cm ⁻¹)	1000	< 1km	60-1000km ²
ACS/TIRVIM	Solar Occultation / Nadir	2-25 μm 400-5000 cm ⁻¹	FTS	4000 (SO) / 500 (N) (0.15 / 1.6 cm ⁻¹)	1000 (SO) / 500 (N)	Better than < 10 km	
ACS/MIR	Solar Occultation	2.4 – 4.2 μm 2380-4166 cm ⁻¹	Echelle / cross-dispersion	50000 (0.06 cm ⁻¹)	2000	< 1 km	
ACS/NIR	Solar Occultation / Limb / Nadir	0.7 -1.6 μm 6250-14285 cm ⁻¹	Echelle / AOTF spectrometer	20000 (0.5 cm ⁻¹)	2000 (SO) / 1000 (N)	< 1 km	